skip to primary navigationskip to content


Neil D. Mathur and Xavier Moya

Applying a voltage across a ferroelectric material can switch ferroelectric domains below the Curie temperature, but near the Curie temperature an applied voltage can drive the ferroelectric phase transition itself. Driving and undriving such phase transitions produces large thermal changes known as electrocaloric effects, and these could be exploited for cooling applications. We study a range of electrocaloric materials, using a range of measurement protocols, in this rapidly growing area.


Caloric materials efficiency map.
Image: Energy efficiency η describes heat Q divided by work W for electrocaloric (EC), magnetocaloric (MC) and mechanocaloric (mC) effects. After Nature Physics 11 (2015) 202.


Too cool to work X. Moya, E. Defay, V. Heine and N. D. Mathur Nature Physics 11 (2015) 202-205

Caloric materials near ferroic phase transitions X. Moya, S. Kar-Narayan and N. D. Mathur Nature Materials 13 (2014) 439-450

Finite-element optimisation of electrocaloric multilayer capacitors S. Crossley, J. R. McGinnigle, S. Kar-Narayan and N. D. Mathur Applied Physics Letters 104 (2014) 082909 pages 1-4

Giant electrocaloric strength in single-crystal BaTiO3 Xavier Moya, Enric Stern-Taulats, Sam Crossley, David González-Alonso, Sohini Kar-Narayan, Antoni Planes, Lluís Mañosa and Neil D. Mathur Advanced Materials 25 (2013) 1360-1365

The electrocaloric efficiency of ceramic and polymer films Emmanuel Defay, Sam Crossley, Sohini Kar-Narayan, Xavier Moya and Neil D. Mathur Advanced Materials 25 (2013) 3337-3342

Predicted cooling powers for multilayer capacitors based on various electrocaloric and electrode materials S. Kar-Narayan and N. D. Mathur Applied Physics Letters 95 (2009) 242903 pages 1-3

Giant electrocaloric effect in thin-film PbZr0.95Ti0.05O3 A. S. Mischenko, Q. Zhang, J. F. Scott, R. W. Whatmore and N. D. Mathur Science 311 (2006) 1270-1271