Research
My research links the fields of low-energy nanoscale device engineering and plasmon-enhanced light-matter interactions by implementing optically-accessible memristive devices. My research group uses the ultra-concentration of light to develop innovative fast ways to study real-time movement of individual atoms that underpins this new generation of ultra-low energy memory nano-devices, thus overcoming the limitations of traditional investigation techniques and opening up new routes to sustainable future IT.
Publications
Key publications:
- S. Tappertzhofen, G. Di Martino, S. Hofmann, "Nanoparticle Dynamics in Oxide‐Based Memristive Devices", Phys. Status Solidi A (2019), 1900587, doi:10.1002/pssa.201900587
- G. Di Martino, S. Tappertzhofen, "Optically Accesible Memristive Devices", Nanophotonics (2019); 8(10) pp.1579, doi:10.1515/nanoph-2019-0063
- G. Di Martino, V. A. Turek, A. Lombardi, I. Szabó, B. de Nijs, A. Kuhn, E. Rosta, J. J. Baumberg, "Tracking nano-electrochemistry using individual plasmonic nanocavities".Nano Lett., 17, 4840 (2017) doi:10.1021/acs.nanolett.7b01676
- G. Di Martino, S. Tappertzhofen, S. Hofmann, J.J. Baumberg, "Nanoscale Plasmon-enhanced spectroscopy in Memristive Switches", Small, 12, No. 10, 1334 (2016) doi: 10.1002/smll.201503165
- G. Di Martino, Y. Sonnefraud, M. S. Tame, S. Kéna-Cohen, F. Dieleman, Ş. K. Özdemir, M. S. Kim, and S. A. Maier, "Observation of quantum interference in the plasmonic Hong-Ou-Mandel effect", Phys. Rev. Appl. 1, 034004 (2014) doi:10.1103/PhysRevApplied.1.034004